Monatshefte für Chemie 99, 1615-1623 (1968)

Kernresonanzspektrographische Untersuchungen im System Phenylphosphoroxydifluorid—Bor(III)chlorid

Von

V. Gutmann, J. Imhof und F. Mairinger

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Wien

Mit 5 Abbildungen

(Eingegangen am 17. April 1968)

Phenylphosphoroxydifluorid reagiert mit Bor(III)chlorid bei Raumtemperatur zu Phenylphosphoroxydichlorid und Bor(III)fluorid, wobei Phenylphosphoroxyfluoridchlorid als stabiles Zwischenprodukt entsteht, das dann mit BCl₃ weiterreagiert.

Phenylphosphonic difluoride reacts with boron chloride at room temperature to give phenylphosphonic dichloride and boron fluoride with phenylphosphonic fluoride chloride as a stable intermediate.

Vor kurzem wurden Koordinationsverbindungen von Phenylphosphoroxyhalogeniden mit einigen Akzeptoren hergestellt¹. Für die Nichtkristallisierbarkeit der Verbindungen $C_6H_5POF_2 \cdot BCl_3$ und $C_6H_5POCl_2 \cdot BF_3$ wurde Halogenaustausch in Erwägung gezogen, bei dem gemischte Halogenide entstehen sollten²; diese sollten sich durch kernmagnetische Resonanzuntersuchungen, z. B. im System $C_6H_5POCl_2$ —BF₃, nachweisen lassen.

Experimenteller Teil

Die Spektren wurden mit einem Gerät der Associated Electrical Industries (GB), Typ RS 2, aufgenommen und nach der üblichen Seitenbandtechnik vermessen. Die Seitenbandfrequenz wurde mit einem Frequenzzähler kontrolliert. Die Fluorspektren wurden bei einer Resonanzfrequenz von 60 MHz mit 5 Vol.% CCl₃F (Hoechst) als internem Standard unter-

¹ V. Gutmann und E. Wychera, Mh. Chem. 96, 828 (1965).

² R. H. Herber, J. Amer. Chem. Soc. 82, 792 (1960).

sucht, während die Phosphorspektren bei einer Resonanzfrequenz von 25 MHz und 85proz. H_3PO_4 ext. (Merck) aufgenommen wurden. Alle Proben wurden ohne Lösungsmittel untersucht.

Abb. 1a. ¹⁹F--KMR-Spektren; (↓) Standard ¹⁹F: CCl₃F, 5 Vol.% intern

BCl₃ (BDH, Poole, U. K.) wurde ohne weitere Reinigung verwendet; $C_6H_5POF_2$ wurde durch Umsetzung von $C_6H_5POCl_2$ (Stauffer Chemicals, N. Y.) mit K_2SiF_6 erhalten³.

 $C_6H_5POCl_2 + K_2SiF_6 \implies C_6H_5POF_2 + SiF_4 + 2 KCl.$

Das Rohprodukt wurde im Vak. abdestilliert und unter Feuchtigkeitsausschluß bei einem Rücklaufverhältnis von 20:1 unter trockenem N₂

³ V. Gutmann, P. Heilmayer und K. Utvary, Mh. Chem. 92, 196 (1961).

H. 4/1968] Kernresonanzspektrographische Untersuchungen

über eine 60 cm Vigreux-Kolonne fraktioniert ($\varkappa_{20}^0 < 10^{-7}$ Ohm⁻¹ cm⁻¹, Sdp._{2,5}: 47,8° C).

Die Herstellung der Proben erfolgte in einem speziellen Einleitgefäß, aus dem unter trockenem N_2 die Proben gezogen wurden. Auf diese Weise

Abb. 1 b. ³¹P—KMR-Spektren; (\downarrow) Standard ³¹P: 85proz. H₃PO₄ extern. Die Zahlen geben die Mol BCl₃/Mol C₆H₅POF₂ an

konnten genau abgewogene Mengen von BCl₃ mit dem vorgelegten C₆H₅POF₂ vereinigt werden, da die vorher eingeleitete BCl₃-Menge durch Differenzwägung bestimmt worden war. Die Molverhältnisse BCl₃ zu C₆H₅POF₂ wurden bis 1:1 variiert.

Im ³¹P-Spektrum des $C_6H_5POF_2$ tritt ein Triplett auf, hervorgerufen durch die Kopplung des Phosphors mit den beiden Fluoratomen, während

1617

im ¹⁹F-Spektrum durch die P—F-Kopplung das Signal in ein Dublett aufgespalten wird. Mit zunehmendem Molverhältnis $BCl_3: C_6H_5POF_2$ verlieren sowohl das Triplett des $C_6H_5POF_2$ im ³¹P-Spektrum, als auch das Dublett im ¹⁹F-Spektrum an Intensität, bis sie schließlich nicht mehr erkennbar sind (Abb. 1a, 1b).

Parallel mit der Intensitätsabnahme der C₆H₅POF₂-Signale entstehen neue Linien bei niedrigerem Feld sowohl im ³¹P- als auch im ¹⁹F-Spektrum. Vorerst ist in beiden Spektren ein neues Dublett zu erkennen, welches durch die Gegenwart von C₆H₅POFCl bedingt ist. Die quantitative Auswertung der ¹⁹F-Spektren und Umrechnung der Fluorbilanz auf eine Chlorbilanz schließt die Gegenwart von C₆H₅POF⁺ aus. Für die Verbindung C₆H₅POFCl spricht außerdem auch die dem Literaturwert entsprechende Kopplungskonstante J_{P-F} (1133 Hz)⁴.

Das Dublett des C₆H₅POFCl verliert sowohl im ³¹P- als auch im ¹⁹F-Spektrum bei weiterer Zugabe von BCl₃ an Intensität und verschwindet schließlich. Im ³¹P-Spektrum entsteht dabei eine weitere, durch C₆H₅POCl₂ verursachte Linie, während das Signal im ¹⁹F-Spektrum bei einer chemischen Verschiebung von etwa 140 ppm auf gebundenes BF₃ zurückgeführt werden muß, wie Untersuchungen in den Systemen C₆H₅POCl₂—BCl₃ und C₆H₅POF₂—BF₃ ergaben. Bei höherer BCl₃-Konzentration treten in den Fluorspektren noch Signale bei 118 ppm (wahrscheinlich freies BF₃) und 135 ppm auf.

Molverhältnis	$C_6H_5POCl_2$	C_6H_5H	POFCl	$C_6H_5POF_2$		
BOL/C.H.POF.	$\delta^{31}\mathrm{P}$	$\delta^{31}\mathrm{P}$	${J}_{\mathrm{P-F}}$	$\delta^{31}{ m P}$	J_{P-F}	
BC13/C61151 OF 2	ppm	\mathbf{ppm}	Hz	ppm	Hz	
0.0781			1140		1105	
0.120*		31,0	1130	11,4	1110	
0.221	-44,0		1150		1120	
0.270*	44,8	33,4	1140	-12,1	1110	
0.386	-46,0	-33,9	1130	_		
0.394*	-46,6		1145			
0.531	48,0		1150			
0,548*	-47,8	-35,7	1125			
0,688	-49,5					
0,702*	-49,7					
0,868*	53,0					
0,872	-53,2					
0,986	-56,4					
1,13	—56,8					

Fabelle 1.	31P-KMR-S	pektren	\mathbf{im}	System	C.H.POF.	$-BCl_3$
		0010101		~,~~~	0 6 - 5 - T - Z	

⁴ E. A. Piers, private Mitteilung, zitiert in J. W. Emsley, J. Feeney und L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Pergamon Press Oxford-London 1966, Vol. 2, 1075. Damit ist zunächst qualitativ nachgewiesen, daß $C_6H_5POF_2$ mit BCl₃ über C_6H_5POFCl zu $C_6H_5POCl_2$ reagiert. Das ³¹P-Signal des gebildeten $C_6H_5POCl_2$ (Tab. 1) wird um so mehr zu niedrigerem Feld verschoben, je mehr BX₃ im Reaktionsgemisch vorliegt. Die Abschirmung des Phosphors nimmt mit höheren BX₃-Konzentrationen ab. Weniger stark wird von der

Abb. 2. (1) Abhängigkeit der chemischen Verschiebung des ¹⁹F vom C₆H₅POF₂ in dem System C₆H₅POF₂—BF₃ von der eingeleiteten BF₃-Menge; (2) Abhängigkeit der chemischen Verschiebung des ¹⁹F vom C₆H₅POF₂ in dem System C₆H₅POF₂—BCl₃ von der eingeleiteten BCl₃-Menge; (3) Abhängigkeit der chemischen Verschiebung des ¹⁹F vom C₆H₅POFCl in dem System C₆H₅POF₂—BCl₃ von der eingeleiteten BCl₃-Menge

 BX_3 -Menge die Abschirmung des Phosphors in C_6H_5POFCl und noch weniger im $C_6H_5POF_2$ beeinflußt.

Die Signale des ungebundenen Phenylphosphoroxyhalogenids verschmelzen mit denen des Komplexes. Die BX₃-Moleküle unterliegen demnach einem schnellen Austausch von Donor zu Donormolekül. Die mittlere Lebensdauer eines Komplexes liegt unterhalb einer Millisekunde.

Die größere Genauigkeit der Fluorspektren ist auf die höhere relative Empfindlichkeit und die damit verbundene bessere Auswertbarkeit des Fluors zurückzuführen.

Aus Abb. 2 und 3 geht hervor, daß die Abschirmung der Fluoratome im C_6H_5POFCl und $C_6H_5POF_2$ mit der BX₃-Menge zunimmt, während die Abschirmung des Phosphors abnimmt. Außerdem werden die Kopplungskonstanten sowohl des C_6H_5POFCl als auch des $C_6H_5POF_2$ um so größer, je mehr BCl₃ zur Verfügung gestellt wurde.

Abb. 3. (1) Abhängigkeit der chemischen Verschiebung des ³¹P vom C₆H₅POF₂ in dem System C₆H₅POF₂—BCl₃ von der eingeleiteten BCl₃-Menge; (2) Abhängigkeit der chemischen Verschiebung des ³¹P vom C₆H₅POF₂ in dem System C₆H₅POF₂—BF₃ von der eingeleiteten BF₃-Menge; (3) Abhängigkeit der chemischen Verschiebung des ³¹P vom C₆H₅POFCl in dem System C₆H₅POF₂—BCl₃ von der eingeleiteten BCl₃-Menge; (4) Abhängigkeit der chemischen Verschiebung des ³¹P vom C₆H₅POCl₂ in dem System C₆H₅POCl₂—BF₃ von der eingeleiteten BF₃-Menge; (5) Abhängigkeit der chemischen Verschiebung des ³¹P vom C₆H₅POCl₂ in dem System C₆H₅POF₂—BF₃ von der eingeleiteten BF₃-Menge; (5) Abhängigkeit der chemischen Verschiebung des ³¹P vom C₆H₅POCl₂ in dem System C₆H₅POF₂—BCl₃ von der eingeleiteten BCl₃-Menge

Zur Ermittlung der Mengen der im Gleichgewicht stehenden Verbindungen wurden die ¹⁹F-Spektren sowie die ³¹P-Spektren elektronisch integriert, wobei das derzeit zur Verfügung stehende Gerät nur für die Fluorspektren befriedigende Ergebnisse brachte. Das gesamte eingesetzte BCl₃ wird zu BF₃ umgesetzt, solange noch Fluor von einer Phosphorverbindung gebunden wird. Wird die eingesetzte BCl₃-Menge auf BF₃ umgerechnet, so enthält dieses einen gewissen prozentuellen Anteil am gesamten vorhandenen Fluor. Die berechnete BF₃-Gerade, die im Ursprung beginnt, stimmt mit den gemessenen Werten überein (Abb. 4).

Molverhältnis BCl ₃ /C ₆ H ₅ POF ₂	С ₆ Н; 8 ¹⁹ F ppm	5POFCl J _{P-F} Hz	C ₆ Η δ ¹⁹ F ppm	$_{5}^{5}\mathrm{POF}_{2}$ $J_{\mathrm{P-F}}$ Hz	Α δ ¹⁹ F ppm	Β δ ¹⁹ F ppm	BF₃∙D δ¹9F ppm
$\begin{array}{c} 0,0781\\ 0,120*\\ 0,221\\ 0,270*\\ 0,386\\ 0,394*\\ 0,531\\ 0,548*\\ 0,688\\ 0,702*\\ 0,868*\\ 0.872\end{array}$	37,58 38,21 39,06 39,44 40,06 40,15 40,97 40,98 41,7	1133,3 1134,2 1134,9 1138,0 1139,3 1139,6 1140,9 1141,7 1152	65,33 65,40 65,67 65,68 65,91 65,88 66,23 66,09	1103,1 1103,9 1105,5 1106,3 1109,1 1108,7 1104,4 1109,3	(118,1) 117,8 117,6 117,63	135,0 135 20	142,14 142,15 142,04 141,94 141,86 141,85 141,68 141,68 141,47 141,49 141,28 141,28
0,986 1,13					nm	nm 135,50	nm

Tabelle 2. ¹⁹F-KMR-Spektren im System C₆H₅POF₂-BCl₃

* nach 1 Monat, andere Meßwerte nach 2 Monaten; nm = nicht meßbar.

Tabelle 3. Die prozentuelle Verteilung der $^{19}{\rm F}$ im System ${\rm C_6H_5POF_2{--}BCl_8}$

Molverhältnis BCl ₃ /C ₆ H ₅ POF ₂	C ₆ H ₅ POFCl bei 40 ppm CCl ₃ F	$C_6H_5POF_2$ bei 66 ppm CCl_3F	A bei 118 ppm CCl ₃ F	B bei 135 ppm CCl ₃ F	BF ₃ · D bei 141 ppm CCl ₃ F
0,0781	12	78			10
0,221	23	45	·		$\hat{32}$
0,386	21	21			58
0,531	12	8			80
0,688			13		87
0,872			27	5	68
0,986			28	10	62

Die Bildung salzartiger Verbindungen, wie $\rm C_6H_5POX^+BF_4^-,$ ist daher auszuschließen.

Abb. 4 zeigt ferner, wie sich das Fluor auf die Reaktionspartner mit zunehmender BCl₃-Menge verteilt.

An die Gerade der Reaktion

$$BCl_3 + 3 C_6 H_5 POF_2 = 3 C_6 H_5 POFCl + BF_3$$
⁽¹⁾

schmiegt sich im oberen Teil die gemessene $C_6H_5POF_2$ -Kurve. Diese endet aber erst bei einem Molverhältnis von 0,66, da das gebildete

 C_6H_5POFCl als zusätzlicher Fluordonor auftritt. Der Fluoraustausch erfolgt um so langsamer, je mehr C_6H_5POFCl bzw. $C_6H_5POCl_2$ schon gebildet wurde, wie die Messungen nach einem bzw. zwei Monaten zeigten. Ober-

Abb. 4. (1) $C_6H_5POF_2$ unter Annahme der Bruttoreaktion $3 C_6H_5POF_2 + 2 BCl_3 \Rightarrow 3 C_6H_5POCl_2 + 2 BF_3;$ (2) (2) $C_6H_5POF_2$ in dem System $C_6H_5POF_2$ —BCl₃ bei 20°; (3) $C_6H_5POF_2$ unter

Annahme der Bruttoreaktion $3 C_{6}H_{5}POF_{2} + BCl_{3} \rightleftharpoons 3 C_{6}H_{5}POFCl + BF_{3};$ (1) (4) BF₃ · D bei etwa 140 ppm in dem System C₆H₅POF₂—BCl₃; (5) C₆H₅POFCl in dem System C₆H₅POF₂—BCl₃; (6) A bei etwa 118 ppm in dem System C₆H₅POF₂—BCl₃ bei 20°; (7) B bei etwa 135 ppm in dem System C₆H₅POF₂— BCl₃ bei 20°

halb eines Molverhältnisses von 0,66 liegt kein an Phosphor gebundenes Fluor mehr vor, entsprechend

$$2 \operatorname{BCl}_3 + 3 \operatorname{C}_6 \operatorname{H}_5 \operatorname{POF}_2 = 3 \operatorname{C}_6 \operatorname{H}_5 \operatorname{POCl}_2 + 2 \operatorname{BF}_3.$$
(2)

 C_6H_5POFCl stellt ein stabiles Zwischenprodukt dar, das mit BCl₃ zu $C_6H_5POCl_2$ weiter reagiert.

$$3 C_6 H_5 POFCl + BCl_3 \approx 3 C_6 H_5 POCl_2 + BF_3.$$
(3)

Bei Raumtemperatur liegt dieses Gleichgewicht weit auf der rechten Seite, bei höherer Temperatur (110°) konnte aber neben $C_6H_5POCl_2$ und BF₃ auch C_6H_5POFCl nachgewiesen werden. Die Fluorverteilung läßt sich auf Phosphor umrechnen und man erhält dann das in Abb. 5 wiedergegebene Diagramm der miteinander im Gleichgewicht stehenden Phosphorverbindungen, ähnlich wie in den Systemen $POCl_3$ — $POBr_3^{5}$ bzw. $POCl_3$ — POF_3^{6} und CH_3POCl_2 — $CH_3POF_2^{7}$.

Abb. 5.

In den zuletzt genannten Systemen tauschen die Phosphorverbindungen ihre Liganden direkt aus, nicht aber im System $C_6H_5POCl_2--C_6H_5POF_2$ bei Raumtemperatur, wo sich C_6H_5POFCl erst bei 110° nach 2 Tagen in kernresonanzspektroskopisch nachweisbaren Mengen bildet. Das im System $C_6H_5POF_2$ -BCl₃ gebildete C_6H_5POFCl entsteht bei Raumtemperatur, jedoch kaum durch direkte Reaktion des $C_6H_5POF_2$ mit bereits gebildetem $C_6H_5POCl_2$.

⁵ L. C. D. Groenweghe und J. H. Payne, J. Amer. Chem. Soc. 81, 6357 (1959).

⁶ H. S. Gutowsky, D. W. McCall und C. P. Slichter, J. Chem. Physics **21**, 279 (1953).

⁷ J. R. Durig, B. R. Mitchell, J. S. Di Yorio und F. Block, J. Chem. Physics **70**, 3190 (1966).